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An exact and very general Lagrangian-mean description of the back effect of oscil- 
latory disturbances upon the mean state is given. The basic formalism applies to any 
problem whose governing equations are given in the usual Eulerian form, and ir- 
respective of whether spatial, temporal, ensemble, or ‘two-timing ’ averages are 
appropriate. The generalized Lagrangian-mean velocity cannot be defined exactly 
as the ‘mean following a single fluid particle’, but in cases where spatial averages are 
taken can easily be visualized, for instance, as the motion of the centre of mass of a 
tube of fluid particles which lay along the direction of averaging in a hypothetical initial 
state of no disturbance. 

The equations for the Lagrangian-mean flow are more useful than their Eulerian- 
moan counterparts in significant respects, for instance in explicitly representing the 
effect upon mean-flow evolution of wave dissipation or forcing. Applications to 
irrotational acoustic or water waves, and to  astrogeophysical problems of waves on 
axisymmetric mean flows are discussed. In  the latter context the equations embody 
generalizations of the Eliassen-Palm and Charney-Drazin theorems showing the 
effects on the mean flow of departures from steady, conservative waves, for arbitrary, 
finite-amplitude disturbances to  a stratified, rotating fluid, with allowance for self- 
gravitation as well as for an external gravitational field. 

The equations show generally how the pseudomomentum (or wave ‘momentum ’) 
enters problems of mean-flow evolution. They also indicate the extent to which the 
net effect of the waves on the mean flow can be described by a ‘radiation stress’, and 
provide a general framework for explaining the asymmetry of radiation-stress tensors 
along the lines proposed by Jones (1973). 

t Present address : Meteorology Department, Massachusetts Institute of Technology, 
Cambridge. 
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1. Introduction 
Ever since Rayleigh (1896) drew attention to the role of viscosity in acoustic 

streaming, and Brillouin (1925, 1936) gave his penetrating analysis of the nature of 
acoustic radiation stresses, there have come to light an increasing number of interesting 
phenomena attributable to nonlinear rectification of oscillatory disturbances in fluids. 
Particularly impressive is the recent evidence that such effects drastically modify 
the large-scale distribution of azimuthal velocity in the earth’s stratosphere (e.g. 
Holton 1975; Lindzen & Tsay 1975). The waves concerned involve buoyancy and 
Coriolis effects. Nonlinear rectification of such waves may also be responsible for the 
four-day rotation of Venus’ stratosphere (Pels & Lindzen 1974; Plumb 1975) and 
could play a role in determining differential rota’tion in stellar interiors (E. A. Spiegel, 
personal communication). I n  these astrogeophysical examples the wave-induced 
stresses cause the mean flow a t  one height and latitude to undergo systematic longi- 
tudinal acceleration at  the expense of a corresponding deceleration (or a wave drag 
on topography) a t  another height and latitude. The resulting feedback on the waves 
themselves can, in some cases, give rise to  interesting time-dependent effects; for 
instance the whole wave, mean-flow system may ‘ vacillate ’ on a time scale related to 
wave amplitude (e.g. Holton & Mass 1976; Plumb 1977; Holton & Dunkerton 1978); 
perhaps the best documented examples are the ‘ quasi-biennial oscillation ’ of the zonal 
wind in the earth’s equatorial stratosphere (Plumb 1977 and references therein) and 
a recent laboratory simulation thereof (Plumb & McEwan 1978). 

We have shown elsewhere how generalizations of the results of Eliassen & Palm 
(1961), Charney & Drazin (1961) and others furnish a powerful aid to the theoretical 
description of such wave, mean-flow interaction phenomena, in particular exhibiting 
in a very general way how mean-flow acceleration is linked to wave transience, 
dissipation, and excitation (Andrews & McIntyre 1976a, b,  1978a, hereafter called 
1-111; see also the related work by Boyd 1976 and the review articles by McIntyre 
1977, 1978). Earlier, Braginskii (1964) and Soward (1972) had obtained comparable 
results in the context of dynamo theory. The most natural way of expressing these 
and other results on rectified wave effects - for example the case of acoustic streaming 
shown in figure 3 below - appears to be in terms of the Laqrangian-mean flow. How- 
ever, the concept of ‘Lagrangian mean’ is often required in a more general sense than 
its classical sense of the mean following a single fluid parbicle; and the question of 
formulation which thus arises is the first concern of this paper. 

An important step towards the required general concept was provided by the 
transformation theory of the Lagrangian equations of motion given, for instance, by 
Frieman & Rotenberg (1960) and more systematically by Eckart (1963). Its  applica- 
tion to  problems of mean-flow evolution has been developed with great ingenuity 
by Dewar (1970), Bretherton (1971) and Soward (op. ci t . ;  see also Soward & Roberts 
1976; Moffatt 1978). However, all these developments either depended a t  some stage 
on various asymptotic approximations or (in the case of Soward’s work) were exact 
in principle but did not lead to  exact theorems on mean-flow evolution due to finite- 
amplitude waves. The question thus remained as to whether there is an underlying 
exact theory, which in some natural sense generalizes the classical, approximate 
notion of Lagrangian-mean flow, and which unifies and extends all the foregoing 
results. 

21-2 
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The purpose of this paper is to construct such a theory, and to set it in the perspective 
of earlier work. In  $0 2 and 3 we show that out of the infinite family of transformations 
considered by Eckart there is a natural choice which leads to a simple yet exact 
definition of the generalized Lagrangian-mean velocity BL, and to finite-amplitude 
versions of the basic theorems on mean-flow evolution. The transformation in question 
is not a member of the class considered by Soward (1972). The resulting ‘generalized 
Lagrangian-mean (GLM) description ’ of wave, mean-flow interaction does, however, 
contain the theories of Bretherton, Dewar (op. cit.) and Grimshaw (1975) (which are 
based on ‘two-timing ’ expansions for slowly-varying, almost-sinusoidal waves); so 
our theory may be thought of as an exact counterpart to those approximate theories. 

Along with its predecessors, the .GLM description is really a hybrid (Eulerian- 
Lagrangian) description of wave, mean-flow interaction, since it describes the general- 
ized Lagrangian-mean flow by means of equations in Eulerian form, with position x 
and time t as independent variables. An Eulerian description of the Lagrangian-mean 
flow is desirable because ideas like ‘steady mean flow’ often need to be expressed. 
Equally important are ideas like steadiness of the wave field, or its spatial homo- 
geneity in some direction; so the particle displacement 5 associated with the waves is 
likewise defined as a function of x and t and not primarily as a function of the in- 
dividual particle label as in a purely Lagrangian description. (Of course the definition 
of c(x, t )  at finite amplitude is itself a non-trivial part of our problem.) An interesting 
by-product of the approach is that it leads to what may be the first exact definition of 
pseudomontentum, or wave ‘momentum ’. The hybrid, Eulerian-Lagrangian char- 
acter of the formulation seems essential to this, owing to the nature of the trans- 
lational symmetry operation associated with conservation of pseudomomentum 
(Peierls 1976). More details are given in the following paper (Andrews & McIntyre 
1978 b) ,  where the related entities of wave-action and pseudoenergy are also discussed.t 

The pseudoniomentum p per unit mass enters problems of mean-flow evolution in a 
way generally expressed by the basic theorems already mentioned, which are given in 
3 3. An interesting special case is that of irrotational flow, as in the usual theories of 
acoustic or surface-gravity waves, where p enters in a particularly simple way. This 
becomes apparent in $0 3 and 7, where, following lines of argument suggested by the 
work of Bretlierton (1971) and Soward (1972), we find that iiL - p is exactly irrota- 
tional whenever the total motion is irrotational. In $ 6 we show how this applies to a 
simple example of inviscid acoustic streaming (figure 3). The irrotationality of 
iiL - p explains why it sometimes turns out that BL = p in irratational-wave problems. 
Our example, however, has distributions of iiL and p which are entirely different 
from each other, even far from the wave source; this is due to the different boundary 
conditions which they satisfy at the wave source, and is typical of most problems 
with non-trivial boundary conditions. 

In  $5  4 and 5 a complete set of equations for the mean flow is derived for the general 

t For linear, slowly-varying waves - more precisely, under those circumstances for which 
Bretherton & Garrett’s (1968) definition of intrinsic wave-energy density holds - pseudo- 
momentum density is approximately equal to $ divided by the intrinsic phase velocity [Peierls 
1976; McIntyre 1977; Andrews & RlcIntyre 1978b, equation (5.10)]. Our terminology follows 
established usage in solid-state physics and expresses the fact that pseudomomentum and 
momentum are different physical entities, corresponding to different translational symmetry 
operations. 
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case of a stratified, rotating fluid under external and self-gravity, using the theorems 
of $ 3. The equations are used to  discuss the role of wave dissipation, etc., in mean- 
flow evolution, particularly for the important case of ‘ longitudinally symmetric ’ 
mean flow appropriate to  the astrogeophysical examples mentioned earlier and studied 
in 1-111. The equations also enable us t o  examine in $ 8 the genera1 limitations of the 
‘ radiation-stress ’ concept, and the reasons why radiation-stress tensors are generally 
asymmetric (cf. Garrett 1968; Jones 1973). The importance of considering a complete 
set of mean-flow equations and boundary conditions hardly needs emphasis; for 
instance the rate a t  which mean momentum or angular momentum is removed from 
one height and latitude, and reappears a t  another, need not depend solely on the 
wave-induced flux of momentum appearing in the mean longitudinal momentum 
equation, a well-known fact illustrated in various ways by the examples of $4.2,  
§ 8.4 and $ 9 below. The importance of describing boundary effects carefully is illustrated 
in 3 4.2, and also by the acoustic example already mentioned ( 0  6).  It is here that the 
GLM description has one of its characteristic advantages, in that  the normal com- 
ponent of iiL must vanish even a t  a ‘fluctuating’ boundary, such as a wave maker, 
whose mean position is fixed ( 3  4.2); a corresponding statement is seldom true of the 
Eulerian-mean flow 8. 

I n  3 9 we note some points requiring special care when applying the GLM formalism 
to incompressible or Boussinesq flow, and to  motion ‘on a beta-plane’. These points 
are illustrated by reference to the model of equakorial planetary waves studied in I. 

At a late stage in developing the present ideas we learned of concurrent work by 
Bretherton (1979), in which he arrived a t  a generalized Lagrangian-mean description 
similar to  ours. His and our work were largely independent, but comparing notes has 
led, we believe, to  improvements in both formulations. The aims and results are 
complementary. Bretherton proceeds from a variational formulation and thereby 
exposes (via the example of infinitesimal waves on an axisymmetric mean flow) a 
close relationship between our results and the conservation laws for the ‘energy- 
momentum’ tensor of classical field theory (Landau & Lifshitz 1975). This relation- 
ship is further explored in the companion paper. I n  the present paper we omit varia- 
tional considerations, and lay more emphasis on a systematic development of the 
elementary procedures for finite-amplitude disturbances, and on a general representa- 
tion of the all-important departures from conservative motion. The definitions and 
results on finite-amplitude disturbances (with the exception of Kelvin’s circulation 
theorem for conservative flow; see 0 3 and Bretherton 1979) have not to our knowledge 
been given elsewhere. 

2. The generalized Lagrangian-mean flow 
2.1. Eulerian averaging 

A single basic formalism underlies all the different applications in which spatial, 
temporal, ensemble, or ‘two-time’ averaging are used. To bring this out economically 
we shall develop the theory in a somewhat abstract way, from time to  time referring 
to special cases to  help fix ideas. It is necessary to  begin with a formal statement of 
what is meant in general by the usual Eulerian averaging operator ; the generalized 
Lagrangian-mean operator will then be introduced in 0 2.2. 
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Suppose that the dependent variables of the problem are expressed as real-valued 
scalar or tensor fields p(x, t ) ,  @(x, t ) ,  . . . , where x is position and t time; these will 
include the usual pressure, density and velocity fields. Let r) be a general averaging 
operator taking p(x, t ) ,  @(x, t ) ,  . . . into corresponding (Eulerian-mean) fields @(x, t ) ,  
$(x, t ) ,  . . . . In  the case of an ensemble average the fields will depend on a suitable label 
a as well as on (x,t), and 0 will involve integration over a. It is convenient to 
require that + has the same tensor character as p, and a notation such as +ij will mean 
a Cartesian component of the tensor T.  The component Tii will be equal to the result 
of averaging a single component pij except in the case of an azimuthal or other non- 
rectilinear space average.? 

We assume that r) and the fields satisfy the following postulates, where a and b 
are constant scalar or isotropic tensor quantities, and products may or may not 
involve contraction : 

- 

(i) ap + b$ = aj? + bp (the operator (7 is linear), 

(ii) i3 = a, 

(iv) (-) commutes with covariant differentation, i.e. with partial differentiation 
with respect to Cartesian co-ordinates (xi,$): thus = [( ),J where ( ),p 

denotes either a( )/axi or a( ) / a t .  

(v) 2 = x; ~7 = t ;  and (i) and (iii) still hold when x or t is substituted for p or @. 

(vi) = 0 a t  (xo, to) ,  then pl(xo, to) = 0. (If pl is a tensor field of rank 
greater than zero, then IpI2 means the sum piik,.. piik.,, over all Cartesian components.) 

Postulate (v) is a matter of definition and admits x and t (which are co-ordinates, 
not tensor fields) into the class of entities upon which (-) may operate. The postulate 
ensures for instance that the ' average position ' of a motionless fluid particle is meaning- 
ful, and the same as its actual position. 

Note that (ii) and (iii) imply that 

3 0; and if 

- - 
p =j?. 

t A tensor definition of the azimuthal averaging operator which avoids reliance on cylindrical 
or other special co-ordinates is as follows. Let 2 be a unit vector along the symmetry axis for the 
mean fields, and introduce the rotation tensor 

r;?, = 8ikcoshf~i i f i ( i  -cosA) -eik,i,sinh. 

For instance r$uk is the ith component of any vector v after it has been rotated through an angle 
h about the unit vector 2. Then the azimuthal average Gijk.,,(x, t )  of a general tensor field qiik, . ,(x,  t )  
is 

where qo) is any point on the symmetry axis. For each h the integrand is the tensor field obtained 
by evaluating the original field a t  the position rotated through - h, and then rotating the resulting 
tensor back through the angle A. I f  y is a scalar, i.e. a tensor of rank zero, then it is understood 
that no r ' s  appear in front of q in the integrand. It is straightforward to verify th&+ is axi- 
symmetric (i.e. that the integrand with 7 in place of q is independent of A ) ,  and that ( ) satisfies 
all the postulates about to be stated. It can also be verified that the cylindrical component8 of ?jj 

are equal to the result of naively averaging the cylindrical components of q, which of course is 
the familiar rule used in practice. 
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Furthermore (i)-(iii) imply that __ 
ap,+b@=aF+b$:, - t= i jT ,  r@= l/@, 

and similarly that other functions of averaged quantities alone are themselves 
'averages', i.e. are unaltered by being further averaged. We assume of course that the 
fields are suitably behaved functions, in a given context of averaging and other 
operations. Note for instance that a gravitational potential field @ will usually have 
a well-defined spatial average with respect to a horizontal, but not the vertical, 
direction. 

2.2. The generulized Lagrangian-mean operator (-)L 

We wish to define an exact Lagrangian-mean operator ) =  corresponding to any 
given EuIerian-mean operator ( ) .  To do this we must define with equal generality 
an exact, disturbance-associated particle displacement field E(x, t ) .  It will then be 
possible to write 

i.e. to define (-)L as the average taken with respect to the displaced positions x +E, 
considered as functions of x and t. 

v(x, tIL = v{x + w ,  t ) ,  t } ,  (2.1) 

As a preliminary, it  is useful to recall two properties of the mapping 

x + x +E(x, t )  (2.2) 
for a general function E(x, t ) ,  i.e. regarding it simply as a general transformation in 
the spirit of Eckart (1 963) and Soward (1972). Introducing the notation 

v"x, t )  = v{x +w, t ) ,  t } ,  (2.3) 

we have first the chain-rule identities 

where 

( ),t = a( ) /at  and ( ),i = a( )/axi. To obtain the second property we must make 
the following assumption: 

(v?,, = (v,tF + (v,jF q , t ,  m,i = (v,$ q , i 9  (2.4u, b) 

B(x, t )  = x +E(X, t ) ,  (2.6) 

(vii) The mapping (2.2) is invertible. 

Then for any given u(x, t )  there is evidently a unique 'related velocity field' v(x, t )  
such that when the point x moves with velocity v the point x+g moves with the 
actual fluid velocity ug, i.e. 

( a p t  + v .  V) E: = UE. (2.6a) 
An immediate consequence is 

( a p t  + v . V) (@) = (Dq/Dt)K (2.6b) 

for any field v, where D/Dt = a/at+u.V [Eckart 1963, equation (3.6); Bretherton 
1971, p. 87; Soward 1972, equation (1.34)]. 

Now the GLM description is obtained by requiring that 

and 

(2.7) 

'(2.8) 

i.e. that 5 is a true disturbunce quantity and v 'a mean quantity. I t  will then follow, 
by applying the operator (-) to (2.6a) and using postulates (i) and (iii)-(v) and 
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L x ,  P x 

rod and particles) 

( b )  

FIGURE 1. Two ways of visualizing 5 and zL, in the case where r) is a spatial average with 
respect to xl. (a)  Mechanical analogy in which a rigid rod R moves with velocity under the 
pull of a large number of elastic bands whose lengths and orientations give 5 at each point on 
R (see text below). ( b )  A material tube V g  of fluid whose centre of mass moves with velocity uL, 
in the limit of infinite tube length, as conjectured by Matsuno (see text, 3 4.3). 

definitions (2.1) and (2.3) above, that v = GL, so that in terms of a ‘Lagrangian-mean 
material derivative ’ 

the relation (2.60) may be rewritten as 

DL = a/at+aL.v 

or equivalently 

where 

(2.10a) 

(2.10b) 

(2.11) 

The quantity ul will be called the Lagrangian disturbance velocity; we evidently 

have - 
ul = 0. (2.12) 

It is (2.7) and (2.12), which characterize 5 and ul as disturbance-associated fields, 
and (2.10b), which states that u‘ is equal to the mean material rate of change of 5, 
which will make it legitimate to regard 5 as a disturbance-associated particle dis- 
placement. It will turn out that the requirements (2.7) and (2.8), and their con- 
sequences (2.10) and (2.12), put (2.2) outside the class of transformations considered 
by Soward (1  972). Those requirements, however, underlie the remarkable analytical 
simplicity of many of the subsequent developments in this and the companion paper. 
The aim is to enable ‘wave’ and ‘mean’ effects to  be separated from one another 
as cleanly as possible a t  finite amplitude.? 

The self-consistency of the requirements (2.7) and (2.8) may be made immediately 
plausible by means of a mechanical analogy which holds for the case where (-) is a 

t Soward (personal communication) points out that it would have been possible to impose 
one of (2.7) or (2.8) within his formulation. The reason why both cannot be adopted is a restriction 
he imposes on the Jacobian J = det &,; see below for details [(9.3) et seq.1. 
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spatial average involving integration along a line R parallel to the x1 axis, as would 
be appropriate for studying waves or instabilities on parallel shear flows, in which 
case (-)" is an average along the wavy line %?defined at any instant by applying to 
R the mapping (2.2).f Suppose that there is no disturbance anywhere at some initial 
time t = to.  In  figure 1 (a ) ,  let R, be a line parallel to the x1 axis. Fix attention on a row 
of marked particles which are initially spaced at equal distances Axl along R,, and 
then watch these particles as they follow the fluid motion. In  the mechanical analogy 
(which has no dynamical connexion with the fluid motion) we imagine that a thin, 
light, rigid rod R initially coincides with R,, but is subsequently free to move while 
remaining parallel to the x1 axis. The position P of a typical particle of fluid whose 
initial position was Po is joined to the point PR on R which initially coincided with 
Po; the ligaments joining the marked particles to  R consist of identical 'elastic bands' 
such that PR is pulled towards P with a force proportional to the distance PR P, and 
similarly for the other points. The rod R is imagined to be in static equilibrium under 
the pull of all the ligaments. Then, in the limit Axl -+ 0, the rod will move with velocity 

iiL; and if x is the current position of PR, g(x, t )  is the 'elastic-band vector' P'P. The 
static equilibrium of the rod expresses the requirement (2.7), and the rigidity of the 
rod expresses (2.8). 

It will turn out (0 4.3) that iiL is also exactly equal to the velocity of the centre of 
mass of a thin tube of fluid initially lying in the x1 direction (figure 1 b). This result was 
conjectured by T. Matsuno (personal communication) on the basis of a calculation 
for small disturbance amplitude. 

In  order to  give a formal definition of 5 and iiL for general (-) it will be convenient 
to introduce a further postulate: 

(viii) Each Lagrangian-mean trajectory (solution of dx/dt  = iiL(x, t ) )  passes 
through at least one point (x,, to) in the neighbourhood of which there is ?u) disturbance, 
in the sense that the mean square of 5 and of every other disturbance field I$ is zero: 

---+ 

- -  
1512 = J'P' l2 = 0. 

For instance the to for each trajectory might be a single, initial time at  which there is 
no disturbance anywhere, as just envisaged. The growth of the disturbance from zero 
need only be hypothetical, of course; all that is strictly necessary is that %he setting 
up of the disturbance in this way should be kinematically possible (with mass con- 
served - a requirement whose importance will become apparent in § 4). 

Note the immediate implication [from (vi) and (viii)] that 

51x-~.t.=t" = 0. (2.13) 

In  the case of an ensemble average (2.13) means that 5(xo, to; a )  = 0 for all a, i.e. for 
each member of the ensemble. An equivalent postulate is implicit in the Lagrangian 
labelling procedure used by Bretherton ( 1  979). 

We may now define 5 and tiL via integration of (2.10b) along mean trajectories, a 
sufficient set of which is taken a t  a time to allow (-) to be computed at  each time step. 
The initial condition on 5 is supplied by (2.13). Thus (2.10b) is now satisfied by 

t Note that the average is not uniformly weighted with respect to arc length 8 along @?, since 
(2.1) involves integration with respect to dx and not ds. 
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definition; the other key property (2.7) follows in a similar way from (viii) and the 
earlier postulates, including (vi).? 

2.3. Basic prqertiea of (-)L 

One reason why the Lagrangian-mean operator is useful is that it gives simple results 
when applied to the material derivative. The general kinematical relation (2.6b) now 
becomes 

(Dp/Dt)C = BL(pE). (2.14) 

Because the velocity field involved in DL is a mean field, (2.14) has two important 
corollaries: 

(Dp/Dt)L = DLijL, (2.16) 
and 

(DplDt)' = .DLp', (2.16) 
where 

(p'= p'-p (+ O ) ,  (2.17) 

and where we have used (2.1), (2.3), and postulates (i), (iii) and (iv). I6 is noteworthy 
that (2.15) and (2.16) have much simpler forms than their more familiar, Eulerian 
counterparts 

Dp/Dt = Dij + U' . Vp' (2.18) 
and 

(Dp/Dt)' = Dp' + U' . V@ +u' . Vp' - U' . Vp', (2.19) 

where D = a/a t  + fi . V and p' denotes the Eulerian disturbance field Q] - @. 

total motion and involving a material rate of change, say 
Because of (2.15), application of the operator r ) L  to any equation governing the 

DS/Dt+Q = 0, (2.20) 

D q j L  +Q" = 0, (2.21) 

immediately generates a similar equation for the evolution of the corresponding 
Lagrangian-mean quantity, 

with no extra term such as that on the right of (2.18). If S is either entropy or potential 
vorticity (Eliassen & Kleinschmidt 1957; equation (5.15) below), then for inviscid, 
adiabatic flow Q = 0 and we have 

In that event we also have 

- -  
DLSL = 0. (2.22) 

@ ( X , t )  = SE, (2.23) 

by integration of DL(@ - Sc) = O along mean trajectories, using postulate (viii). That 
is, the generalized Lagrangian mean of any convected quantity S is exactly equal tlo 
the value a t  x + g  of S itself. The strong constraint on the evolution of the mean flow 

t First, note that - 
5 L 0 .  t A o  = 0. - 

(For, by (i)-(iii) and (vi), 0 $ lS-i12 = IpI"-25.i+ ]El2 = m- 1EI2, whence $ IF= 0 at 

(x,,,to), by (viii); hence 1g12 = 0 and 60 5 = 0.) We now apply (-) to (2.10b) to show with the 
help of (i)-(iv) that DLi = 0 for all x and t ;  then integration along mean trajectories with the use 
of the foregoing relation as initial condition shows that '5 = 0 for all x and t ,  verifying (2.7). 

- 
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represented by (2.22) and (2.23) would not be evident from an Eulerian-mean des- 
cription, in which the equation corresponding to (2.21) is (2.29) below. Examples of 
problems in which the difference between (2.29) and (2.21) is crucial, with S = entropy, 
include guided internal gravity waves, and virtually all astrogeophysical problems 
involving Coriolis effects in stratified fluids (e.g. Matsuno 1971; Grimshaw 1975; 
McIntyre 1973, 1977, 1978). An example where it is illuminating to take S to be the 
potential vorticity is that of shallow-water motion in a rotating 'ocean basin' 
(Moore 1970 and references therein); see also Grimshaw [op. ci t . ,  equation (4.29)]. 
Relations of the type (2.23) also imply restrictions on the time development of 5 
itself; an example of circumstances where this is useful will be encountered in 0 5.3. 

The price paid for the great simplicity of (2.15) and (2.16) is that the operator ) L  

does not commute with a p t  or a/axi, as is evident from (2.1) and (2.4). However, as 
immediate consequences of (i)-(iv) we have 

(up + b@)L = aFL + b p ,  ( 2 . 2 4 ~ )  

(2.24 b-d) 
- - - a= = a, +" = vL, DLo, = DLTp. 

2.4. Stokes corrections 

The relationship with the conventional Eulerian-mean description is represented by 
the 'Stokes correction' to each mean field, now exactly definable as 

(2.25) 
- 
pyx, t )  = pyx, t )  -@(x, t ) .  

For small disturbitnce amplitude a, Taylor expansion of (2.3) shows that 

@ = @ + q' + 65 (?,5 + 465 6 k q j k  + 0 ( a 3 ) 9  (2.26) 

since @ + p' = p(p, t )  aud F,jk = pjk + O(a).  Application of the operator (-) to (2.26) 
gives a result wNich may be written, noting that Fs = 

(2.27) 

since 7 = 0 and f = 0. Evidently i j s  is a wave property in the sense that it can be 
evaluated correct to leading order, in this case O(u2), from a knowledge of zero-order 
mean flow and linearized wave solutions only. For later reference we note another 
consequence of (2.26), namely that 

$ = p' + t j  @,j  + O(a2), (2.28) 

The difference between the form of (2.21) and that of its Eulerian-mean counterpart 

DB+Q = -U' .VS'  (2.29) 

is accounted for by the Stokes 'drift ' as as well as the other Stokes corrections Bs 
and Qs. Whenever the term - u' . VS'  in (2.29) plays an essential role in forcing the 
Eulerian-mean flow, the Stokes drift tends to be correspondingly significant. For 
example it is essential even in the case of almost-plane inertio-gravity waves, for 
which iis might at  first sight appear negligible because the wave motion is approxi- 
mately transverse. The contribution from iis to the mean Coriolis force cannot be 
neglected in calculating ,the acceleration of the mean flow, and hence in calculating 
the effective transport of momentum by the waves (Grimshaw 1975; Mcfntyre 1977, 
1978). 

-+, as 
- -  - 

vs = 6 5  ?,> + !&j ck@, jk  + 0(a3), 

recalling (2.17), (2.25), and the fact that = O(a2). 
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The second term in (2.27) is usually negligible in problems of slowly varying, 
almost-plane waves, because ij is differentiated twice. Waveguides with sheared mean 
flows provide the commonest situations in which both terms of (2.27) are, by contrast, 
essential to leading order (when 9, is the velocity along the waveguide). Further 
aspects of the differences between the Eulerian-mean and generalized Lagrangian- 
mean descriptions will emerge in 0 8. 

3. Basic theorems governing mean-flow evolution 
Our formalism has already exposed constraints on mean-flow evolution of the simple 

type (2.21). We now show that it leads to a similarly powerful way of expressing the 
equation of motion for the mean flow. The result in question, which like (2.21) isexact, 
contains as special cases the results of I and III connecting mean-flow evolution with 
wave dissipation, etc. It is closely related to the approximate equation (24) of 
Dewar (1970); it  also contains Bretherton’s form of Kelvin’s circulation theorem, and 
indeed the details of Bretherton’s analysis (1  971, 0 6.8) suggest the key initial step in 
the derivation to  be presented here. That first step has been given explicitly by Soward 
[1972, equation (5.4)] in the slightly different context of a general transformation of 
the equation of motion. Soward’s equation (5.4) involves the ‘related velocity’ v 
associated with a general transformation of the form (2.2); in the present context v 
becomes a mean quantity, EL, and hence the equation becomes one for mean-flow 
evolution, which takes the desired form after further manipulations involving the 
properties (2.7) and (2.10). It turns out that no anisotropic, wave-associated stress 
tensor appears anywhere in this equation, in striking contrast to  the Eulerian-mean 
equation of motion with its Reynolds-stress term. The nonlinear forcing of the mean 
flow by the waves is expressed in terms of a vector wave property p, whose i th  
component is 

(3.1) 
together with an irrotational, pressure-like contribution, a term in the form of a 
scalar times the mean entropy gradient, and terms explicitly involving dissipation 
or other departures from conservative motion. Here Q is the angular velocity of a 
rotating frame of reference. The vector p will be identified in the companion paper as 
the pseudomomentum per unit mass, and indeed the theorem about to be derived is 
related to the partial resemblance between the two symmetry operations underlying 
conservation of momentum on the one hand, and conservation of pseudomomentum 
on the other (Peierls 1976; Bretherton 1979; Andrews & McIntyre 1978b). The minus 
sign in (3.1 ) is necessary in order that our general definition be consisbent with the usual 
approximate formula (intrinsic wave-energy per unit mass) + (intrinsic phase velo- 
city), as is obvious from (3.1) in a simple case such as Q = 0, UI u’cc expik(x,-ct). 

Let the j th  component of the equation of motion for the total flow be 

Du,/Dt + 2(Q x u), + @,j + p - ’ ~ , ~  + Xj = 0, (3.2) 

where the angular velocity Q is assumed constant and such that b = Q ; CD = @(x, t )  
is a potential for the sum of the gravitational and centrifugal forces, p is density, p is 
pressure, and X = X(x, t)  is a function which allows for any further contributions such 
as dissipative forces, and whose form is left completely general. We allow CD to depend 
on t as well as on x so that the astrophysically significant case of a self-gravitating 
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fluid is included. Let T ( S ,  p )  and F ( S ,  p )  represent the thermodynamical dependence 
of temperature and density upon entropy S per unit mass and pressure p .  Let 
H ( S , p )  similarly represent the enthalpy per unit mass; by definition it satisfies 

and 
(3.3a) 

(3.3b) 

The corresponding internal energy per unit mass is 

4s) PI = H ( S ,  P )  - P / F ( S ,  P ) .  (3.4) 

(3.5) 
Let 

an O(a) wave property which in virtue of (2.23) is zero for adiabatic motion. Moreover 
it may easily be seen that ij is an O(a2) wave property, by Taylor-expanding (3.5) in 
Se = @ +SI and noting that 3 = 0. 

Following Soward (loc. c i t . ) ,  we multiply (3.2), evaluated a t  the point E: = x+?& by 

4 = - (F(Ss ,  p5)}-' + (F(gL, p')}-', 

(3.6) 
Ej,i and sum over j. Now - 

Zj,$( @$)C = (@C),$ 

6 1  

P 

by (2.4b); and 
q , i  (j P$) = 7 (P7,i = (P9, ir{mL7 p71-l- q1 

= (P7.i aH(gL,  P W P s  - (Pt),i Q 

= {H(SL ,  P?>,i - (SL),i mL, P7 - (P'),i% (3.7) 

Thus the multiplication by Zj,i brings the pressure term ( p - l ~ , ~ ) C  into the form of a 
pure gradient plus a baroclinic term involving the mean stratification (SL),i plus a 
term explicitly involving a dissipative or other departure from adiabatic motion. 
(This form is different from that of Soward, who did not distinguish in his equation 
(5.4) between buoyancy effects of adiabatic and of diabatic origin.) The remaining 
manipulations, which depend on (2.7), (2.10) and their consequences, are given in 
appendix B, and the final result is the following theorem: 

THEOREM I. Equation (3.2) implies that 

BL($J - pi) + ('iZ&(Zk - Pk) + 2(s2 x i iL) i  + n,i 
-- 

- (RL) , iT(P,pE)+LTt  = - t j , i X $ +  (pg),$q7 (3.8) 
where 

II = H(@, pe) + 5L - u~{*u$ + (a x Q}. 

- The right-hand side of (3.8) is a wave property, since ( ~ e ) , ~ q  = ( P I ) , ~ ~ +  (pL),i?j and 
p1 = 0. It depends explicitly on disturbance quantities which represent departures 
from conservative motion. Two special cases important in connexion with the 'longi- 
tudinally symmetric ' mean flows mentioned earlier are as follows. 

COROLLARY I. If all mean quantities are independent of the Cartesian co-ordinate 
xi, then 

-- 

-- 
D L ( Z t  - pi) + 2(s2 x ii'L)i + Zf = - Q,$ x; + (pz),i 'I. (3.9) 

In the last term, p z  appears instead o fpc  because (j3L),i = 0. 
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COROLLARY 11. If all mean quantities are axisymmetric about an axis through the 
origin of co-ordinates and parallel to SL, then by taking 2 .x x (3.8), where f is a unit 
vector such that SL = Qf, we get? 

where Eijk is the alternating tensor, and 

the position vector relative to the nearest point on the axis. 

Corollaries I and I1 are exact results corresponding to the small-amplitude, 
Eulerian-mean results given in papers I and I11 ( q . ~ . ) .  Despite being more general 
the present results are drastically simpler, as is especially evident by comparison with 
the formulae given in Q 6 of 111. Corollaries I and I1 show how the longitudinal accelera- 
tion is linked to dissipation or forcing of the disturbances, a relation seldom obvious 
from an Eulerian-mean description. We shall examine this relation in more detail in § 5. 

It remains to  demonstrate the connexion with Kelvin’s and Bjerknes’ circulation 
theorems (Eliassen & Kleinschmidt 1957) and to note the special role of p in irrotational 
flow. 

-- 
BL{f.xx ( 0 L - p ) } + 2 Q ~ L . B L + f  . X X %  =Ei3k~jxk{-~m,iX~+(p’), iq),  (3.10) 

X I  = x-(f.x)2,  

COROLLARY 111. Let r be a closed circuit moving with velocity EL. Then 

(EL - p + SL x x) . d s  - T ( sL, pc) d s L  f r d f  
8 Yr 

-~ 
= -f r { ~ + ~ j , i X : - ( ~ ~ ) , i q ) d s , .  (3.11) 

This result follows immediately from theorem I and the standard identity 

in the present notation. It generalizes the approximate results obtained by Bretherton 
(1  971) and Grimshaw (1  975) for slowly varying waves. When X, q and Q are zero it 
implies the version of Kelvin’s circulation theorem given by Bretherton (1978), 
namely that the circulation of iiL - p + G? x x around any circuit lying in a surface of 
constant SL, and moving with the Lagrangian-mean flow, is exactly constant. This 
result is evidently related to (2.22) with S replaced by Ertel’s potential vorticity (see 
(5.1 5) below). 

A deduction relevant to the classical theories of acoustic and surface gravity waves 
is the following: 

COROLLARY IV. If  S2 = 0 and -the motion is irrotational, homentropic (S = constant) 
and conservative (X = 0,  q = 0 ) ,  then iiL - p is irrotational. 

This follows immediately from (3.1 1 )  and postulate (viii), since irrotational, con- 
servative flow can be set up from an initial state of rest. (An alternative, more direct 
proof due to Soward will be noted in 0 7 .) 

t In deriving (3.10) we have used the fact that axisymmetry of the mean flow implies that 
^z . x x 0, = 0 if q is a scalar, and 2 .  x x VP, - 2 x 5 = 0 if q is a vector. (The latter relation implies 
that the extra term produced by taking 2 .x x inside DL is cancelled by the term in (Zi).i pk.)  

If it is desired to express the equations in cylindrical or spherical co-ordinates the standard 
formulae may be used for each tensor field, including g(x, t ) .  This implies of course that 5 is resolved 
into its components on the co-ordinate directions a t  x. and not those a t  x + x .  
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In  corollary I11 we may note an alternative form of the Bjerknes buoyancy term 
on the left: 

(3.12) 

which follows because dH = T d S  +p-ldp, r) cisL = ( ) dgL, and dH = d( l l f )  by 
postulate (iv). (This can be combined with the q teim on the right of (3.11), noting 
( 3 4 ,  to  give f ( d p / ~ ) ~  on the left.) 

If we were to extend the meaning of the operator (-) so as to be applicable to a 
line integral I over a path I?, then we could rederive (3.11), in the conservative case, 
direct from Bjerknes' circulation theorem for the total flow just as in Bretherton 
(1 979). (For instance when (-) denotes averaging with respect to xl, I would be defined 
as the average of integrals over the set of paths similar to I? obtained by translating 
I? in the x1 direction.) One would then add to the list of axioms one which asserts that 
( ), so extended, commutes with line integration. But it is of some interest that our 
result (3.1 1 )  does not actually depend on any such extension of the meaning of ( ) .  

We end this section on basic theorems with a result which bears the same relation 
to the energy equation as theorem I does to the equation of motion itself 

- 

THEOREM 11. Equation (3.2) implies that 

DL(4IUsIp +RL + @ - e) - (uk),t(uk - pk)  - n,t - -- 
+(gL),tT(SL,pS)+fiL.xL+(T&)L = - i i ~ ( j , ~ x ~ - ( p ~ ) , t ~ ,  (3.13) 

where the Lagrangian-mean enthalpy BL = H ( S , P ) ~  = H(SC,pC), and 

e = <j,t{uf + (a x S)j}, (3.14) 

i.e. minus the temporal analogue of (3.1) (see $ 5  of the companion paper). (Note the 
result corresponding to corollary I when mean quantities are independent of time.) 
The derivation, omitted here, parallels that of theorem I (see appendix B). There, the 
momentum equation (3.2) was multiplied by Zj,i .  Here, we contract the four-vector 
- (S1, E,, E3, - t) , t  with the set of four equations made up of the three components of 
the momentum equation together with the energy equation corresponding to (3.2), 

(3.15) 
namely 

where E is given by (3.4). In  proving (3.13) it  is convenient first to replace p-lV. ( p u )  
in (3.15) by D(pp-l)/Dt-p-lp,, using (4.1), and then to recall (3.6), (3.7) and (2.4). 

D( 41uy + & + @)/Dt  + p - T  . ( p u )  = - u . x - TQ + @,$, 

4. Mass conservation 
To complete the set of equations for the mean flow, and to express them in con- 

servation form when appropriate, we need a mass continuity equation. The required 
analysis also provides the easiest way of deducing the boundary condition satisfied 
by iiL at a surface generating, reflecting or absorbing a wave disturbance. Moreover 
it leads, in the case where r) is a Cartesian space average, to a particularly simple 
way of visualizing fiL, as the velocity of the centre of mass of a tube of fluid initially 
lying parallel to  the direction of averaging. This appears as a consequence of another 
key property of the GLM description, namely that the total momentum is on average 
attributable to the mean flow, with no contribution from the waves. 
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FIGURE 2. Generation of inertio-gravity waves by flow of a stratified, rot,ating fluid over a corru- 
gated, irnperrneable boundary. The disturbance velocity out of the paper tends to be in phase with 
the depressions in the boundary, leading to an O(a2) mass flux beneath the plane 9. (The signs 
shown for the disturbance velocity are appropriate to t,he c&se where 2R is less than the 
buoyancy frequency of the stratification.) 

4.1. The Jacobian J and the mean-$ow densityp” 

We now assume the following, this being the last in our list of postulates: 

(ix) The total motion u(x, t )  conserves mass, with density p :  

D p p t  +pG . u = 0. (4.1) 

It is convenient t o  associate with the mean velocity field iiL(x, t )  a densityp” defined 

(4.2) 

p” = pEJ, (4.3) 

(4.4) 

such that the mean flow also satisfies a mass-conservation equation exactly: 

.is.,- +PO. i i L  = 0. 

The required definition is (Eckart 1963) 

where J is the Jacobian of the mapping x -+ x + 5 = X(x, t ) :  

J = det {Z{,J = det {aij + &J. 
By postulate (vii), J ,  and thereforep, is finite and positive. A number of standard 
analytical properties of J and its cofactors Kij will be needed later; these are listed 
in appendix A for convenience. To show that (4.3) satisfies (4.2) note that, by (4.3) 
and the rule for changing variables of integration, 

is equal to  the mass instantaneously contained in a volume Yk’E which is the image of 
Y p  under the mapping x --t 3. If %’” mores with the mean flow then YE moves with the 
actual fluid, by (2.10a)) and (4.5) is constant. This is true for arbitrary V-, whence 
(4.2) follows by a standard argument. An alternative, direct proof is given in appendix 
A. 

It is crucial t o  subsequent developments that  

p” = p ,  (4.6) 

i.e. thatpis a mean quantity. This is a consequenceofpostulate (viii), and the constancy 
of (4.5) for a small volume $”- which follows the set of mean trajectories passing 
through an arbitrary neighbourhood of the ‘undisturbed’ point x, a t  time to. Again, 
an alternative and more direct proof is given in appendix A. 
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4.2. Condition at an impermeable boundary 

If the flow is constrained by an impermeable boundary .B’E, such as the corrugated 
boundary shown in figure 2, then the corresponding ‘mean boundary’ .G9, defined as 
the image of BE under the inverse mapping X + x, is impermeable to  the Lagrangian- 
mean flow. This is clear from the foregoing considerations of mass conservation, noting 
that .G9E may be regarded as ‘moving with the actual fluid’ for present purposes. 
Thus the boundary condition on the mean flow is that  the component of iiL normal 
t o  the ‘mean boundary’ 

It should be appreciated that a correspondingly simple statement is far from true 
in an Eulerian-mean description as is, indeed, implied by the differences between 
Eulerian- and Lagrangian-mean descriptions already discussed in 5 2.4. The normal 
component of the Eulerian-mean velocity generally disagrees with that of the 
boundary. One very simple example involving acoustic waves is given in $ 6 .  Another 
example is that  of figure 2, which depicts a stratified, rotating flow over a rigid, 
corrugated lower boundary, generating inertio-gravity waves. (More details for this 
example are given in McIntyre 1977, 1978.) If the boundary is immobile, then the 
Lagrangian-mean vertical velocity 54 is zero there. There can however be a 
significant Eulerian-mean velocity component U,, generally needed to satisfy con- 
tinuity with the horizontal mass flux below an Eulerian control surface such as 9’ in 
the figure (Uryu 1974; Bretherton & Haidvogel 1976). The mass flux in turn arises 
from a correlation between the boundary height and the disturbance velocity normal 
to  the paper. This difference between the Eulerian- and Lagrangian-mean boundary 
conditions is of course just that  required to  accommodate the Stokes drift (whose 
normal component is seldom zero a t  a boundary generating waves). 

It thus appears that  the generalized Lagrangian mean is a natural way of defining 
‘mean flow’ when simple boundary conditions on the normal component of mean 
velocity are desired. 

equals the normal component of the velocity of &? itself. 

4.3. iiL as the motion of the centre of mass of a tube of $uid 

The total momentum in the volume V”S is 

/ p x  = / * E y - P E u w x ) .  

1 pudx = 1 p i i L d x + ~ / u z d x .  

By (4.3) this is [pucdx. Thus 

(4.7) 
YE 9- 

Now recall the situation shown in figure 1 (b) ,  for the case in which (-) is an average 
in the x1 direction. Take Y to  be a long, thin, straight, uniform tube of fluid of length 
2 b ,  extending between x1 = f b .  Then (4.6) and (4.7) imply that 

(4.8) 

- 
since U’ = 0, so that the last integral in (4.7) is irrelevant. If Y’- always moves with 
velocity iiL, just as does the rigid rod R in figure 1 (a ) ,  then 9-c is the actual tube of 
fluid which initially lay along R. By (4.5) and (4.8), its momentum per unit length is 
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equal, in the limit, to that of the same mass of fluid moving rigidly with velocity iiL. 
(In this sense all the mean momentum is contained in the mean flow; the waves 
possess no momentum on average.) It follows that iiL is the velocity of the centre 
of mass of YE. 

5. The mean-flow equations and some of their general implications 
5.1. A complete set of equations 

We now have the equation of motion in the form (3.8), the continuity equation (4.2), 
and an equation in the form (2.21) for the mean entropy. These constitute five equa- 
tions for the six mean quantities 

so one more equation is needed. Applying (-)L to  the equation of state in the form 

{aL, SL, FL,& (5.1) 

P-F(S,P) = 0, 
we rearrange the result as 

F-F(SL,jiL) = A, 
where A is an O(a2) wave property: 

A = (/7-jjL)+F(S~,p~)-F(SL,~L). (5.4) 
The equation of state also enters (3.8) via the known functions T ( S , p )  and H(S ,p ) .  A 
form of the equation of motion which does not involve T and H will be given in 0 8.1. 

The self-gravitating case may be treated simply by appending the appropriate 
Poisson equation relating 0 top ;  its Eulerian mean appears to be the most convenient 
form to use. 

5.2. Longitudinally symmetric mean JEOW 
We now apply this set of equations to a qualitative discussion of mean-flow evolution, 
with emphasis on the astrogeophysical type of problem involving stable stratification 
and Coriolis forces and in which the mean flows of interest are axisymmetric. At 
sufficiently large distances from the symmetry axis we have the limiting case appro- 
priate to corollary1 [equation (3.9)], in which the azimuthal or longitudinal co-ordinate, 
of which mean quantaities are assumed independent, can be treabed as a Cartesian 
co-ordinate xl. We shall adopt that case as the simplest basis for detailed discussion. 
However, by virtue of corollary I1 [equation (3.10)] the discussion applies almost 
word for word to longitudinally symmetric mean flows in general. 

In  Cartesian components the complete set of equations for the rectilinear limiting 
case, with 51 = (0, 0, Q) and G = G(xz,  x 3 )  or G(xz,  x3,  t ) ,  may be written 

( 5 . 5 ~ )  

i i t t+Zk ~ ~ ~ + u ~ u ~ ~ + 2 ~ u ~ - - ~ T ( - ~ , p L ) + 7 7 , ~  = -X2 ,  (5 .5b )  

(5.5c) 

cut - PJ,t + ( q , z  - Pl,Z - 2 Q F k  + @E 3 - PI31 G = - 31, 

Tit t i- Sg 2 i- i& Ti; - -3 T(RL, PL) + 77,3 = - X,, 
@+uT;@+s@% = -&L, (5.5d) 

p"- F(RL,pL) = A, (5.5e) 

where 
(5.5.f) 
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and where the Poisson equation for G is appended if appropriate. In  (5.5a)) TI is 
given by (3.9) (corollary I) as 

-- 
3 1  = R + t*,1 x; - (Pi),, Q, (5.6) 

while X2 and T3 are more complicated expressions with whose details we need not 
be concerned except for the fact that, like Xl, they are wave properties apart from 
possible contribution from xL.t 

We first ask under what circumstances a steady, unidirectional mean flow, with 

and 

is allowed by bhe equations in the presence of waves. In  other words, when is the 
forcing on the right of (5 .5)  not such as to  cause a departure from a steady, uni- 
directional mean flow of the form (5.7)2 We assume of course that this flow is per- 
mitted by the boundary conditions. The answer is evident from inspection of (5.5): 
the steady mean flow (5.7) is possible only if 

and 
(5.8a) 

(5 .8b)  

which by (5.6) generally requires the waves to be not only steady, but also conservative. 
This important fact could hardly have been deduced by inspection of the Eulerian- 
meanequations (e.g. II1,equations 6.2). 

It should be particularly noted that F2, ?!T3 and A are not generally required to be 
zero. For instance they need not be zero for stable, stratified rotating flows in which 
VG, VSL and G! are non-zero. In  such flows the EL, BL and pL fields can adjust so 
that Coriolis, buoyancy and pressure forces balance X2 and S3: the resulting steady, 
unidirectional mean flow must satisfy the equation 

-2G! .Vi i~+{VSL xVT(SL,jjL))1 -%3,2+32,3, (5.9) 

which represents a modified 'thermal wind ' or geostrophic-hydrostatic balance and 
which results from cross-differentiating (5 .5b )  and (5 .5c) ,  setting Gk = Tit = 0. In such 
circumstances the interaction of the waves and mean flow, while by no means 
zero, as (5.9) illustrates, is not such as to force the mean flow to accelerate. 

If on the other hand zl or QL differ from zero, for steady or approximately steady 
waves, then cumulative mean-flow changes must be expected to occur as time goes 
on, essentially because there is no longitudinal mean pressure gradient in (5.5a) 
which can balance the effects of Xl and QL.$ 

t Explicitly, 
-- 

Fd = q+&J$- ( ~ c ) , i q - ~ L p i - ( ~ ~ ) , i p ~  
P 

-Bt;(T(SI.,pc) -T(S'L,~L))+[H(BL,p~)-H(BL,~L) + ~*-u:{&u:+(Q xQ,}],~ (5.6') 

for i = 2 or 3, this being just the obvious result of rearranging terms in (3.8). Simpler-looking 
alternative versions of (5.5b, c) will be noted in $8. 

$ gL of course acts indirectly, by inducing a mean secondary circulation ( T i : ,  Tit) in the familiar 
way illustrated for instance in I, in McIntyre (1977, 1978), and in 3 9 below. 
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5.3.  Transient, conservative waves 

When the motion is conservative, the restrictions on mean-flow change are severe 
even if the waves are not steady. Then ( 5 . 5 ~ )  becomes 

D L ( U 4  - p1 - 2Qz2) = 0, (5.1 Oa) 
and ( 5 . 5 4  becomes 

ps= = 0. (5 .  l o b )  

Taken together, this pair of constraints may be regarded as the extension to finite 
amplitude of the 'generalized Charney-Drazin theorem ' for transient waves, a linear 
version of which was presented and discussed in $ 5  of I .  (By (3.10) the analogue of 
( 5 . 1 0 ~ )  for the more general, axisymmetric case is simply 

D L {x I (ul -L - PI) + Qx12) = 0, (5.11) 

where iif is the longitudinal mean velocity component, and XI is the perpendicular 
distance to the axis.) 

Under at  least some circumstances of interest the results (5.10) appear to imply 
that a temporary disturbance can force only a temporary mean-flow change, even at 
finite amplitude. Suppose that we have a domain 9, in the x 2 ,  x3 plane, initially con- 
taining a steady, undisturbed flow of the type (5.7), through which a nonlinear 
disturbance subsequently propagates. We suppose that no disturbance is left behind, 
in the sense that p = 0 for t < to, t > tf, (5.12) 

say, and similarly for the right-hand sides of ( 5 . 5 ) .  The disturbance might for example 
be generated at  one part of the boundary of 9 and absorbed (conservatively) at 
another, or alternatively the domain might be unbounded. Then after time t f  the 
mean flow is left as before apart from longitudinally symmetric oscillations (described 
by the unforced mean equations) about the original steady state; we here assume that 
the flow satisfies the classical criterion for stability to longitudinally symmetric 
disturbances (e.g. Charney 1973; Hoskins 1974), as is normally true for the astro- 
geophysical flows of interest. If the symmetric oscillations in turn propagate away, or 
are absorbed conservatively a t  a boundary, the mean flow reverts exactly to its 
original state whenever the information given by (5.10) for t > tf, i.e. prescribed 
values of EF - 2Qx2 and sL on each line of fluid particles parallel to xl, is enough to 
determine uniquely an undisturbed flow of the type (5.7) satisfying (5.9) with right- 
hand side zero. This in turn can be expected to  be the case whenever both (a) the 
boundary conditions allow no fluid to enter or leave 9 permanently (as if 9 were a 
rigid container, a t  least so far as the final state is concerned), and ( b )  the flow for 
t > t f  is stable to longitudinally symmetric disturbances as already assumed. (Note 
that stability in this sense requires BL(x2, x3) to increase monotonically upwards, i.e. 
in the direction of decreasing p ,  and U?(x2, x3) - 2Qx, to increase monotonically along 
each constant gL surface in the direction consistent with centrifugal stability; this 
would appear 60 permit only one arrangement of the fluid elements in the x2,  x3 plane 
for simple shapes of 9, but surprisingly we have not been able to find a uniqueness 
proof in the literature.)t 

t The mathematical statement of the problem involves a Monge-AmpAre equation. A proof of 
uniqueness has been given by Rellich (see Courant & Hilbert 1962, p. 324) but under physically 
inappropriate boundary conditions. 

Note added in proof. In the case of a Boussinesq, incompressible fluid, and convex 9, a 
suitable uniqueness theorem is given by A. V. Pogorelov (Monge-AmpBre Equations of Elliptic 
Type, p. 56, theorem 2, Noordhoff, 1964). 
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If we are given only that 

u’ =p’ = p ’ =  S’= 0 for t < to and t > tr, (5.13) 

then it is not in fact obvious whether (5.12) will hold, i.e. whether p will return to 
zero for t > tf, since in (3.1), 5 and thus u‘ might not return to zero even though (5.13) 
was satisfied. But it can be shown that a sufficient condition on conservative flow, 
guaranteeing that and therefore p does vanish whenever and wherever (5.13) is 
satisfied, is that the Jacobian 

ZL>/a(x,, x3) * 0 (5.14) 
for all z2, x,, where 

2 = p-l(2G2 + V  x u) . vx, (5.15) 

i.e. Ertel’s potential vorticity. (Or 2 can be any other quantity satisfying DZ/Dt = 0 

and hence DLZL = 0.) The proof, which relies on the basic property = 0 expressed 
by (2.7), is given in appendix C. Note that the relationBLZL = 0 togetherwith (5.10b) 
and (4.2) or (5 .5f)  implies that 

- -  

BL{pa(SL, ZL)/a(z,, x,)} = 0 (5.16) 

(expressing proportionality of the area of a ‘mean fluid element’ to p-l), so that 
(5.14) is true for all t if true initially. It is possible that a condition weaker than (5.14) 
would suffice, but we have not succeeded in finding a general proof in any such case. 

The requirement that the flow be conservative may be stringent in practice. If a 
very small amount of dissipation is present, its effects can interact strongly with 
transient mean-flow changes that would otherwise be temporary (see for instance 
examples studied by Geisler 1974, Holton & Mass 1976, and Holton & Dunkerton 1978, 
involving stratospheric planetary waves). If the conditions for ‘singular absorption ’ 
are approached somewhere (small phase velocity relative to the local mean flow, in the 
case of planetary waves), as a result of mean-flow changes due in the first instance to 
wave transience, then the dissipation terms may become more effective than an a 
priori estimate would suggest. 

5.4. Resonant forcing of the meanJEozo 

If iii- or Zk is substantially different from zero, there may arise the possibility of 
resonant forcing of the mean flow (by terms like iiL. Vp). There can then be cumulative 
mean-flow changes, even for steady, conservative waves, when disturbance parameters 
are ‘tuned’ to  special values. This possibility is in fact more familiar for mean flows 
which are not longitudinally symmetric. The simplest examples involve non-dispersive 
waves in one dimension, for which the ‘tuning’ is automatic because of the lack of 
dispersion. Another very simple example is that of a packet of internal gravity waves 
guided between fixed, horizontal surfaces, in a layer of inviscid, non-diffusive, 
Boussinesq liquid of constant mean buoyancy frequency N .  We denote the mode 
number of the vertical waveguide structure by n. The waves have an amplitude which 
varies slowly in the propagation direction, so that we may define (-) in the usual 
way to mean ‘take the slowly-varying part of ( )’. When the waves have constant 
dimensionless frequency 

w / N  = 0.608 (5.17) 
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(McIntyre 1973) then O(a2) mean-flow changes, which have the structure of very 
long waves with vertical modenumber 2n, propagate at  a phase velocity just matching 
the group velocity cg of the primary waves. The result is resonant growth of the O(a2) 
mean flow. Thus in a frame of reference moving with velocity cg we have an O(a) wave 
amplitude which is steady to  leading order, but cumulative mean-flow change. (See 
McIntyre (1973) for more detail, and Grimshaw (1976) for an analysis dealing with 
events after the simplest approximation scheme breaks down.) Watson, West & Cohen 
(1976) and McComas & Bretherton (1977) point out that  this kind of resonant forcing 
can be viewed as a limiting case of resonant-triad interactions (contrary t o  an ill- 
considered statement by McIntyre !) and give other examples of it, involving both 
surface and internal waves, which may be important in the ocean. 

6. On irrotational waves 
The importance of departures from conservative wave motion, or of the tuning of 

phase and group velocities to  give resonantly-forced mean-flow changes, should not 
dist'ract attention from the fact t,hat non-trivial mean flows can arise even in very 
simple examples of steady, conservative waves. This is well illustrated by the example 
from acoustics shown in figure 3, namely the sbeady, inviscid streaming associated 
with radiation from a rigid sphere oscillating in a straight line. The example (which 
surprisingly does not seem t G  be well known) also reinforces the point about the 
importance of boundary conditions made in 9 4.2, as we shall see. 

The total velocity u(x.'t) is irrotational, so that 

V x ( i i L - p ) = O  (6.1) 
by corollary IV.  Here T)I, is the GLM operator associated with a]) Eulerian time 
average ( ) .  There is however no reason for expedting that iiL = p [qven though the 
1a.tter is true for certain very simple, and often quoted, solutions describing surface- 
gral-ity and acoustic waves, e.g. Landau & Lifshitz 1959, equation (64.8)l.t I n  this 
problem we have 

a t  the mean position of the boundary (§4.2) ,  but p.A + 0,  where A is a unit vector 
normal to  the mean boundary. Assuming a steady wave field so that pqt = 0 in (4.2), 
we also have 

Equations (6.1)-(6.3) govern iiL exactly. 
For a simple analytical solution of (6.1)-(6.3) correct to  O ( d )  we can describe the 

disturbance correct to O(n)  by means of a time-harmonic acoustic dipole in the usual 
way (Lighthill 1 9 7 8 ~ )  5 1 .11)  and, further, replace (6.3) by 

f i L . f i  = 0 (6.2) 

V.(PiP) = 0. (6.3) 

v.zi= = 0, (6.4) 
with error O(u4) since iiL = O(a2). Straightforward calculation, using (3.1) in (6.1) to  
find V x iiL, then shows that the Stokes stream function Y for iiL is proportional 
t o  

in spherical co-ordinates with 8 = 0 on the axis of vibration, and r = r, on the mean 
boundary. (It is remarkable that the expression (6.5) does not depend, as does the 

t ;In even simpler yet relevant example (Brillouin 1925, 1936) is the one-dimensional problem 
of acoustie waves generated by an infinite plane boundary vibrating steadily about .zl = 0; clearly 
p =+ 0 but 

(COS 8 - C O S ~  0) { 1 - (rb/r)z)  (6.6) 

= 0 everywhere, by mass conservation ( 5  4). 
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FIGURE 3. Steady Lagrangian-mean streaming due to acoustic radiation from a rigid sphere 
vibrating in the 0 = 0 direction in an inviscid, homentropic fluid. The expression ( 6 . 5 )  to which 
the Stokes stream function is proportional is contoured a t  intervals of 0.05. The effect of the 
boundary conditions is significant even in the far field; for instance on the axis 0 = 0 the far-field 
value of \EL/ IS only two-thirds of the acoustic energy per unit mass divided by the sound speed. 

acoustic field itself, on h/rb,  where h is the acoustic wavelength.) The coefficient of 
proportionality for (6.5) is such that the radial component of iiL satisfies 

(r2 sin O)-laY?/aO N Qpo (6.6) 

on the axis as r - f c o ,  where po( r )  is the magnitude of p on the axis in the far field. 
(There p is directed radially and 1 pi equals the acoustic energy density ,@ divided by 
the sound speed, as is easily shown; see equation (5.10) of the companion paper.) 

When r,/h is large, the flow involves a mass flux larger by a factor of order r, /A 
than that which would arise from viscous boundary-layer streaming (e.g. Schlich ting 
1932; Stuart 1966; Riley 1967), and in any case extends to larger distances for all 
valuesof rb/h. In  practice, wave dissipation (vitiating (6.1) by making the right-hand 
side of (3.8) significant in the far field) can produce an even stronger effect extending 
to yet larger distances, well beyond the wave field itself (Lighthill 1978~8, b ) .  

If, as in the present example, ii is O(a2), (2.27) shows that 2: may be approximated 
by Q U ; , ~ ,  which equals & u; ,~  for irrotational flow. Using (2.28) and (2.10b), we find that 

u] u; = + O(a2) when ii is O(a2);  substitution into (3.1) with S2 = 0 then gives 

pi = 2: - i(a),it + 0(a3), (6.7) 

Vx(rlS-p) = 0 (6-8) 

which is consistent with the exact result 
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for irrotational motion, a corollary of (6.1). Since (-) denotes a time average here, 
(6.7) implies that  

This latter is a familiar approximate result for sinusoidal acoustic and surface-gravity 
waves. Buti we emphasize that there is no such relation between iis and p in less special 
circumstances, particularly in the rotational flows usually met with in astrogeophysical 
fluid dynamics, a simple but sufficient example being the internal-gravity-wave 
problem referred to in 0 5.4 (McIntyre 1973, p. 810). 

pi = U: + 0 ( ~ 3 ) .  (6.9) 

7. The frozen-field transformation, and iiL-p for irrotational flow 
It can be useful to  define further dependent variables in partial analogy t o  p" by 

insisting that they have some simple behaviour, like (4.5), under the mapping x-t E. 
This is the basic idea motivating the work of Soward ( 1  972) on the magnetic induction 
equation, and in our case will lead t o  a more direct derivation of the basic result 
(corollary IV of 0 3) that  iiL - p is irrotational when u(x, t )  is irrotational. 

For any vector field V(x,  t )  we can define an associated vector Q such that 

where Cc is the image of an arbitrary surface C under the mapping x+X. Then is 
that  vector field which would be carried into Vc if the vector field were 'frozen' into 
an imaginary fluid which suffered the displacement x + Z .  Equation (7.1) is satisfied 
(for uny mapping x+E) if we take (Soward, op. cit.; Moffatt 1978, chap. 8) 

Vj = Kij  Vi ,  (7.2) 

where K i j  is the cofactor of J defined in appendix A. This device is certainly useful 
when the field V is in fact frozen into the actual fluid motion, in which case its governing 
equation is 

Examples are vorticity in an inviscid, homogeneous fluid, and a magnetic field in a 
perfectly conducting fluid (but not velocity u or mass flux pu !). When V satisfies 
(7.3), Q must satisfy 

(Moffatt, op. cit.),  just asp" satisfies (4.2); and under postulate (viii), v is then a mean 
quantity (Q = V) for essentially the same reason as p" is [cf. appendix A, $A2]. 
However, with dissipation or external forcing, the right-hand side of (7.3), unlike 
that of (4.2), becomes different from zero; and v is not generally a mean quantity. The 
use of 

avp - v x (u x V) = 0. (7.3) 

a V / a t - v x ( i i L X Q )  = o  (7.4) 

- 

may nevertheless lead to  powerful results, as Soward's work shows. 
When V = 2Q + V x u, the absolute vorticity, (7.2) implies that  - 

Q = 2 a + v  x ( i i L - p ) .  (7.5) 

[We are indebted t o  Dr Soward for pointing outi this result, which corresponds directly 
to the transformation of V, x u* in his equation (5.1) into V x G in his equation (5.4).] 
The derivation is indicated in (A 13)-(A 17). It follows that if u is irrotational and 



Nonlinear waves on a Lagrangian-mean flow 633 - 
8 = 0, then 
corollary IV  of 0 3. 

= 0 and tiL - p is imotational; this constitutes a more direct proof of 

8. On the radiation-stress concept 
One of the basic relationships generally obscured by the Eulerian-mean description 

is that between the effective momentum transfer due to waves, and the wave drag 
on a boundary generating the waves (Bretherton 1969a, b ,  1971; Grimshaw 1975; 
Muller 1976; McIntyre 1977, 1978). The present theory provides a natural framework 
for expressing this idea and assessing its domain of validity in any given case. The 
basis of the necessary analysis is as follows; see also 0 5.2 of the companion paper. 

8 .  I .  A form of the mean-Jlow equations analogous to 
the Eulerian-mean equations 

The usual Eulerian-mean equations are the result of simply applying the operator r) to the equations for the total motion. If instead we apply the operator r)" to 
the general equation of motion (3.2), with j replaced by i, the pressure term becomes 

(8.1) 

by (4 .3 ) ,  (4 .6 )  and ( A 4 ) ,  where Kij  is the (i,j)th,cofactor of the Jacobian J .  We write 
(8.1) as 

1 7  (P-lP,i)L = (P-%,i)' =P- ( P  ) , jKij  

p - q .  W9 (8 .2)  

where p.. 23 = p'K, (8.3) 

and where ( A  3) has been used. By substituting ( A  I b )  into (8.3) we get 

The average of this may be rearranged slightly as 

where 

Thus the generalized Lagrangian mean of (3 .2)  may be written 

DLZ> + 2(S2 x i iL)i  + G,i + p " ~ ' ( ? ~ ) , ~  + X> = - (q)' +p"-lRijJ. ( 8 . 7 ~ )  

Equations (2 .21) ,  (5 .3 )  and (4 .2 )  are respectively 

j j L @  + Q" = 0, (8 .7b )  

and 

p"-F(SL,FL) = A 

DLp+pv . i i L  = 0,  

where A is given by (5 .4 ) .  The terms 

p--lRijJ, (m)s, A 

( 8 . 7 ~ )  

(8 .7d)  

on the right of these equations are all wave properties. It may sometimes be appro- 
priate to include also on the right-hand sides wave properties which contribute to 
FL and QL, such as gs and Qs, depending on how X and Q are to be specified in a given 
application. 
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8.2. The physicat meaning of R,, 
The tensor Rii is the counterpart of the Reynolds stress or wave-induced excess 
momentum flux which appears in Eulerian-mean formulations. As is now well known, 
there is no reason why Rii should equal the Reynolds stress; and this difference, taken 
together with the absence of a wave-induced forcing term in the mean entropy 
equation (8.7 b )  when Q = 0, and the presence of bhe new wave-induced forcing terms 
A and (ms (the latter having no counterpart a t  all in an Eulerian-mean formulation), 
completes our remarks on the differences between the Eulerian-mean and generalized 
Lagrangian-mean descriptions begun in 5 2.4. 

To see in physical terms how the anisotropic mean stresses Ej and Rij arise, and 
why Rij differs from the Reynolds stress, note from (A 15) that 

J-p$ = j xePdCI .  (8.9) 

where C. and Cc are any pair of surfaces related by the mapping x + x +g.  (For instance 
if C is a plane surface like Yin figure 2, then Cs might look like the corrugated boundary 
there.) Contributions to Fii and therefore to - Rii representing forces tangential to Y 
can arise because pressure fluctuations may be correlated with different slopes of the 
surface Cc (Bretherton 1971). In  the example of figure 2, R,, > 0 at the boundary. In  
the same example, the Reynolds-stress component -ijm > 0 a.lso; but it is not 
even approximately equal to RI3, if only because of the mean Coriolis force on the 
fluid lying between Y and the boundary (Bretherton 1969a). 

8.3.  The asymmetry of Rii 

The tensor ti,, is not generally symmetric, so pi, and Rij are likewise asymmetric 
despite their role as stress tensors for the mean flow. No paradox is involved, for 
reasons first indicated by Jones (1 973); the usual argument concerning the sum of the 
moments of surface forces on a fluid element is vitiated by extra contributions which 
arise as follows. First, the line of action of any resultant body force such as gravity, 
on a volume Ye of fluid, generally suffers an O(a2) mean displacement because of the 
disturbance; the associated torque can, alternatively and more easily, be thought of 
as due to the disturbance ‘buoyancy forces ’ a t  the edges of Ye, as suggested in figure 4. 
This and a further torque attributable to Coriolis forces are comparable in magnitude 
with the surface torque on Ye represented by the antisymmetric part of Rij. Second, 
there is an effect (which in Jones’ case is smaller in order of magnitude) due to the 
wave-associated contribution to the rate of change of angular momentum of the fluid 
within Ye about a fixed point (see also Bretherton 1978). 

8.4. Rij and the radiation-stress concept 

R,, is closely related to the ‘radiation-stress’ tensors defined by Brillouin (1925), 
Longuet-Higgins & Stewart (1964), Dewar (1970), Bretherton (1971) and others. The 
relation usually turns out to be much closer than that with the Reynolds stress, and 
is thus useful in a wider class of examples. In  order to be called a radiation stress, as 
the term has come to be used, Rij must represent the sole effect of the waves on the 
mean flow. Our theory shows t h a t  this generally involves approximation; and the 
question of whether or not the other effects A and m)’ can be neglected, perhaps 
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1 +" f 

FIGURE 4. Buoyancy and Coriolis torques on a volume %'.'c distorted by the plane, progressive 
inertio-gravity waves whose generation is suggested in figure 2. (These torques account for the 
asymmetry of R j j  in this case.) The sloping lines are lines of constant phase. At the instant 
depicted, the shaded fluid is moving into the paper, and the buoyancy force on it is downward. 
Since this t,emporarily ' heavy' fluid is all displaced to the left (and the ' light' fluid in between 
to the right), the buoyancy forces exert a net anticlockwise torque on $ p E .  There is also a 
clockwise t,orque on %-c, owing to the Coriolis forces a t  its top and bottom edges. Attention was 
first drawn to effects of this kind by Jones (1973). 

after integration across a waveguide, is a matter for detailed investigation in each 
case. Obviously (V@)s is zero in models postulating a time-independent, spatially 
uniform gravitational-centrifugal acceleration V@; but there is seldom any reason 
why A should be exactly zero. 

Both A and (V@)s are usually negligible, however, for almost-plane waves in an 
incompressible fluid ( F ( # , p )  = F ( S ) ) ;  in such cases Rij can immediately be given the 
status of a radiation stress, in the first approximation. A well-known example in which 
this is true but a corresponding statement not true of the Reynolds stress is that  of 
almost-plane inertio-gravity waves (Grimshaw 1975; Miiller 1976; McIntyre 1977, 
1978). I n  that example, the extra effect on the Eulerian-mean flow represented by the 
buoyancy-forcing term on the right of (2.29) is significant in thw first approximation, 
but the terms A and (V@,tS are negligible in (8.7). 

I n  acoustics A is not a t  all negligible, even for plane waves. However, the radiation- 
stress idea is rescued (e.g. Brillouin 1925; Bretherton 1971) by redefining 'mean 
pressure' in such a way that A disappears from ( 8 . 7 ~ ) .  A compensating O(a2) change 
is then required in the definition of the isotropic part of R,,, which then becomes the 
familiar acoustic radialtion stress and does reprosent the sole effect of the waves on the 
newly-defined mean fl0w.t This device for eliminating A is possible in principle 

t Correct to O(a2) ,  the result of this procedure is that the isotropic term pc( 1 - J )  Si, in the 
expression (8.6) for Ri, is replaced by a term - c-3( i3c / i3p)sp6i j  (Brillouin 1925; Bretherton 1971) ,  
where the sound speed c = {aF(S,p)/ap}-t is evaluated for the basic state correct to zeroth order 
in a, and where plane periodic waves are assumed so that Tjj = 0 in (A 9), by (A 1 l ) ,  and 

The term - c ~ - ~ ( i i c / i i p ) ~ p ~ ~ , ,  which in terms of the usual acoustic energy density l?? becomes 
- (pl??/c) (&lap) 6j , ,  comes entirely from elimination of the F terms in (5.4), i.e. from nonlinearity 
of the equation of state (the ' hard-spring effect'). Elimination of the other contribution to A ,  
p - pL, accounts for the disappearance of ps( 1 - J )  Bi,. 

- 

- 

- 

& k  = -p"p = -p l /pc2  -p'/pc2. 
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whenever the fluid is compressible, and is formally analogous to the usual procedure 
for dealing with 'bulk viscosity ' in the Navier-Stokes equations (e.g. Batchelor 1967, 
p. 154). In Longuet-Higgins & Stewart's case of surface-gravity waves A is again 
significant but can be eliminated, the relevant 'compressibility' being that of the 
two-dimensional, zterticully-integrated, free-surface flow. 

A very simple example where A can neither be neglected to leading order nor 
eliminated in any useful sense is that of guided internal gravity waves ( Q  5.4; McIntyre 
1973, p. 810). For incompressible or nearly incompressible flow, an attempt to eliminate 
A by the foregoing device would of course lead to  an infinite or unphysically large 
' mean pressure '.Another such example is the Boussinesq model of equatorial planetary 
waves to be discussed in § 9. 

8.5. Relution to earlier theories 

Many alternative ways of writing Rij can be constructed from the two identities 
(A 1 b )  and (A 8), and the identity 

Kij = ( 1  + 6m.m) Sij - <j , i  + kij, (8.10) 

where kij is the (i,j)th cofactor of We quote one exact expression which is convenient 
in practice, and which shows how the present theory is related to earlier, approximate 
theories. It may be obtained by manipulating (8.6) with the aid of (8.10) and (A 8): 

- 
Rij = - (6 k,kpl + 3Tkh.p') Sij + (p' - 6m(3L),m} cj,i + Zi j + N i j  +pD"!&j, (8.1 1 

where - 
zij = - F r J ( L t j , m ) , i  + & { F L ( L t j ) , i ) , m 7  

Nij = HFL(Lt t j , i  - 6j tm,{)},m, 
- 

and Tij isdefined by (A 10). Tij is O(a2) sop%'&. is O(a3) for small a; andNij can be ignored 
being identically non-divergent (Nij,i = 0). To O(a2),  the Sij  term in (8.11) equals that 
in (8.6). 

If (--) is a space average in the (Cartesian) i direction, Zi j  vanishes. Thus Zij is 
often negligible in problems of almost-plane waves, an example being that considered 
by Grimshaw (1975). In  such cases the wave-induced flux -Rij of i-momentum, in 
some direction j orthogonal to i, is given by minus Dhe second term in (8.1 1) alone. 
To leading order, that term becomes 

since by (2.28), p1 - [m(j3L),m = p t  + O(a2),  to leading order the Eulerian pressure 
disturbance. This is the form arising in Grimshaw (op. cit.), in I (equations A l l ) ,  
and in (9.1) below. The fact that p' is involved, rather than pl ,  is noteworthy in view of 
the above-mentioned fact that Rij  itself represents the wave-induced part of the mean 
pressure force across a disturbed material surface. On such a surface p' would appa,r  
at  first sight a more natural measure of the disturbance pressure. However (8.11) 
and (8.12) show clearly that p' is the part of the pressure disturbance that ' matters' 
to leading order, when i + j ,  under the kinds of approximation often used in wave 
theories. In  the important case of Boussinesq, stratified flow p' is of course a more 
convenient entity to deal with than p l .  The latter is dominated by the effect of vertical 
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displacement through the large, hydrostatic pressure gradient, which is not explicitly 
represented in the equations one0 the Boussinesq approximation has been introduced. 

9. Approximate equations for incompressible, Boussinesq flow, and the 
model of equatorial planetary waves on a beta-plane studied in I 

Because of the inconvenience of using the total pressure when the Boussinesq 
approximation is appropriate, i t  can be useful in practice to  apply our procedures 
directly to  the Boussinesq equation of motion. That equation has tihe same form as 
(3.2), except that  the term O,j is replaced by an upward-directed ‘buoyancy accelera- 
tion’ ej(x, t ) ,  and p is taken constant in the term p - l ~ , ~ .  The symbol p now denotes the 
excess pressure relative to  a basic hydrostatic pressure distribution associated with 
the constant density p;  that  is, p now denotes what would previously have been 
written a s p  +p@ (with p exactly constant). 

Thus the results of $3, for instance, apply immediately in the Boussinesq limit, 
provided we interpret p as the modified pressure just defined, replace VO by the buoy- 
ancy acceleration 8, and note that 8 is proportional to  excess entropy times VO. The 
departure q from adiabatic motion defined by (3.5) becomes simply proportional t o  - S‘ 
(cf. I, equation 5.3b), because the first term in (3.5) may be replaced by its first-order 
Taylor expansion about @, even for finite-amplitude disturbances, in the Boussinesq 
limit. A useful consequence is that  2 = 0, so that pg may immediately be replaced by 
pot ontherightof (3.8)and(3.11). 

It is also of interest to  apply the operator (-)L directly to  the Boussinesq equation 
of motion and compare the result with that obtained in 0 8. Using (2.15) and replacing 
j by i in (3.2) we get the following Lagrangian-mean equation of motion: 

after a little manipulation using (2.27) on the pressure-gradient term, and the fact 
that  when V .u‘ = 0, 

as we shall show shortly. The first term on the right of (9.1) corresponds to  (8.12). 
The second term, however, is not a divergence; t o  obtain an equation in which the 
wave-forcing term is the divergence of a tensor as in p” times (8 .7a) ,  multiply both 
sides of (9.1) by 

take an O(a2) term - ;p-lp,tm),jk over t o  the right, using the alternative (original) 
form ~ - l ( V p ) ~  for the pressure terms in (9.1) itself. 

The relations (9.2) and (9.3) follow from the fact that  p and pe tend to  the same 
constant value in the Boussinesq, incompressible limit, so that (4.3) and (4.6) imply 
that P/p+ J 4  1. Then (9.2) follows by comparing (A 8) and (A 9); and since the first 
term in (A 11) becomes negligible we also get (9.3), from (A 9) and the fact thatp”/p = J .  

(9.4) 
I n  an incompressible fluid the disturbance may force the Lagrangian-mean flow to be 
divergent. This does not contradict the fact that  the Jacobian for the conventional 
Lagrangian description of the total motion is unity for incompressible flow, since that 

DLE: + 2 ( ~  i i ~ ) ~  - B: +p-yj+),i + X: = p-l(G),j + ;p-~(=),~ p j k  + 0(a3), (9.1) 

V . g  = O(a2), (9.2) 

- 
J = P/P = 1 - &(ti tk ) , jk  +O(a3)7 (9.3) 

- 

It is noteworthy that, in virtue of (9.3) and (4.2), 
- -  

v . i i ~  = p g j  ck),ik + 0 ( ~ 3 )  + 0. 
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Jacobian is the product of J with the Jacobian for the Lagrangian description of the 
mean motion [Eckart 1963, equation (2.5)]; the two factors need not separately be 
unity.1- The generally divergent character of the Lagrangian-mean flow is rather 
obvious in some cases; for instance if the centre of mass of the tube of fluid 
depicted in figure l ( b )  is initially very close to  a stationary boundary parallel to  
xl, i t  will tend to move away from the boundary as the disturbance grows. 

Like the second term of the Stokes correction (2.27)) the right-hand side of (9.4) 
can often be neglected in problems of ‘almost-plane’ waves [Bretherton 1971, p. 88, 
note (i)]. But it is again crucial in transient problems involving waveguide structure; 
an example is classical surface gravity waves. Other examples include the guided 
internal gravity wave problem mentioned in 9 5.4, and the equatorial planetary wave 
problem studied in I. I n  view of its current scientific interest (see I for background), 
we sketch a few details for the latter problem. 

I n  the simplest Boussinesq, ‘beta-plane’ formulation of the problem, (-) is the 
average with respect to  a Cartesian co-ordinate x,; x3 is directed ‘upward’ and x 2  
‘northward’, 0 = (0, 0,  O ) ,  and 2Q = ( O , O ,  p x 2 )  with /3 constant; note that 

2(Q x u ) L  p 2Q x i i L .  

I n  fact a little manipulation using (2.27) shows that 

2p2 U)L = 2~ i i ~  + { - *p([T,,, p tz1 ,  o} + o(a3) (9.5) 
in this case. On a beta-plane this expression must be used in place of the Coriolis 
term both in (9.1) and in theorem I and its corollaries. The O(a2) Lagrangian-mean 
meridional circulation ( i i k ,  i i k )  is governed by (9.4) with DL = a/at, together with 
( 5 . 5 d )  with buoyancy 0 in place of entropy 8, viz. 

Under the approximations described in detail in 0 6 of I i t  turns out that  @/at B @/at, 
so the mean buoyancy equation becomes 

- e~+8~z:+i9~zk = -QL. 

- 
82 zk + 8% G: - a8s/at - 8”. (9.6) 

It also turns out that  in calculating both 8s and &s the right-hand side of (2.27) may 
be approximated by (m),2 and that the term 83iiT; may be neglected in (9.6), as may 
i(t:),33t in (9.4). Finally s,3 ( A  a,;), representing the basic stable stratification, can be 
treated approximately as a function of x3 alone, and 8’ = - 8,3 f;,. Hence if the Eulerian 
mean of Q is zero (as was, somewhat arbitrarily, assumed in I), the equations are 

- 

satisfied by 

and 

to  the level of approximation asserted in 96c of I. The divergence - 
%?,2 + E!& + a { & E ) , 2 2  + (52 &),23}/at (9.9) 

is significantly different from zero unless the waves are steady. We have checked that 
these results, together with the appropriate approximations in corollary I [equation 

t It is now clear why, even for incompressible flow, our mapping x +x +c satisfying (2.7) and 
(2.8) does not belong to  the class considered by Soward (1972), who demanded that J = 1. 
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(3.9), with the Coriolis term replaced by (9.5)], and use of both terms in (2.27) for 
Ziy, do lead to the result (7 .1 )  of I for aii,/at. This is an excellent check on the correct- 
ness of that result, since in I it was derived via a very different route. 

It may be shown that the Coriolis force (2RE2) associated with (9.7) makes a con- 
tribution to Zitt of the same order of magnitude as that due to RIw, a point relevant 
to the discussion of limitations on the radiation-stress concept in $8.4. It is also of 
interest that GL and GI. are significantly out of ‘thermal-wind balance’, mainly 
because of the contribution (i&~‘),~ to the vertical force on the right of the third 
component of (9.1). 

10. Concluding remarks 
Although no formal assumption limits either the amplitude or the nature of the 

disturbance in our theory the complexity of real flows will, of course, dictate practical 
limitations. For instance dispersive waves of dimensionless amplitude a 2 1 are as a 
rule strongly unstable to many other scales of motion, leading to sporadic or fully- 
developed turbulence. It would be impractical to compute the5 and iiL fields associated 
with such a motion in all its detail. Cases must be anticipated where max 151 would 
tend to increase indefinitely with time. Turbulent motion is not necessary for this; 
it  will happen, for instance, with laminar ‘rotor’ or ‘cats-eye’ patterns such as are 
obtained in idealized models of large-amplitude waves, or of small-amplitude waves 
at critical levels. The point can be appreciated by visualizing the fate of the line of 
particles in figure 1.  (Unboundedness of 5 need not, of course, imply unboundedness 
of EL, as is clear from (2.1) and the example of a two-dimensional, ultimately steady 
cats-eye pattern, for which each initially-streamwise line of particles will evidently 
remain within some region throughout which 1.8 is bounded.) 

Against such possible restrictions on applicability must be set the very great 
simplification and unification of theorelical structure offered by the generalized 
Lagrangian-mean description. Exact results such as (6.1)-(6.3) extend and put into 
perspective various classical results for irrotational waves; ant! general theorems of 
the type given in $ 3  have already found significant applications to large-scale geo- 
physical phenomena. In  I we showed how, as well as giving qualitative insight, such 
general results can drastically simplify the explicitr calculation of mean-flow evolution 
in a particular case (namely equatorial planetary waves). This is reminiscent of the 
simplification in Braginskii’s dynamo calculations resulting from the use of Soward’s 
formalism (Moffatt 1978). The results of I revealed an interesting dependence of 
mean-acceleration profiles upon the wave dissipation mechanism, which had not been 
appreciated before ; the GLM description evidently provides a far more direct route 
to such results than does the conventional Eulerian-mean description, especially 
when the generalization to finite amplitude is of interest (cf. the far more complicated 
manipulations involved in the Eulerian analysis of 111, even at  O(a2)).  In  the com- 
panion paper we shall find moreover that the GLM description leads to a remarkable 
simplification in the exact theory of ‘wave-action’ and related conservable wave 
properties.? 

7 Note added in proof: Another example in which use of the GLM theory drastically simpli- 
fies a mean-flow calculation has recently been given by Grimshaw (1978). 
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Appendix A. Manipulations involving the Jacobian J and its 
cofactors Kij  

A 1. Direct proof that p" satis$es (4.2) 

We now prove by direct manipulation that p" satisfies (4.2), and a t  the same time 
introduce a few identities which will be needed elsewhere. Let K,, be the cofactors 
of J ,  which satisfy 

Since zi,k = 8ik + f&, the first of these is equivalent to 

(A l a )  
- - 
bi ,k  Kij = JSkj = Jk, i  Kji. 

Kkj = J8kj - c i ,k  Kij. (A 1b)  

b )  
- -  We also have 

Kij  = aJ/E,, ,  = ~ l , ~  am,q, 

whence it should be noted for later reference that 

Kii,, = 0. 
Next, the inverse of (2.4b) is 

Now (A 2a)  implies that 
(v,i)' = ( ~ ' ) , j K i j / J  

J I ,  = K , j ( ~ i J ) , p  

where ( ),,L stands for a/at or 8 / a x k .  Hence 

DLJ = K .  13 .DLZi,, = Ki,{(DLZi),, - ;lik, Z,,k} = (a!),, Kij  - Titi Sik J ,  

using (2.10a) and (A 1 a) .  By (A 4) the term in K ,  equals J(u,,~)' = J(V . u)c; hence 

BLJ = J((V.u) ' -V.OL}.  (A 6) 
By (2.14), 

BL(pc) = (Dp/Dt)E. 

DL(p") = D L ( p U )  = (Dp/Dt)cJ+pcJ{(V .u)'-V .iiL>, 
Thus 

whence (4.2) follows upon using (4.1). 

A 2. Direct proof that p" is a mean quantity 

By applying (-) to (4.2) and using (i)-(iv), we see that (4.2) is true with 3 in place of 
p". Therefore 
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Equation (4.6) then follows by integration along mean trajectories since postulates 
(vi) and (viii) imply that at  some point (xo, t o )  on each mean trajectory p' = 0,E = 0, 
J = 1, p = jj = pc = pgJ = p V ,  i.e. p" =p". 

- - 

A 3. Further properties of J and Kij 
The Jacobian may be expanded as 

so by (2.7) and postulate (iv) 

where 

and also, after a little more manipulation, 

Equation (A 12) is the relation needed for transforming an integral over a surface C 
to an integral over the image Xc of Z under the mapping x -+ E, as in (7.1). Denote the 
vectorial area elements by dZ and D e .  If dr and ds  are distinct, infinitesimal vectors 
tangential to Z at a point x, we may take 

D = dr(x) x d s ( x ) ,  
and similarly for dCc. Thus 

For an alternative proof, write the left-hand side in the form 

n 

by the divergence theorem, and then use ( A 4 )  and (A 3).  Also (A 13), (2.4b) and the 
fact that ejml a'p,lm = 0 show that - 

Kij %*p(V,:F = %&JEq?,l) ,rn.  (A 16) 

By taking pl = up + (GI x x ) ~  in (A 16), averaging, and recalling (3.1), we get, after a 
little manipulation, 

K,(V x u + 2Q)t = [V x (EL - P)]j + 2Qjs 

which is (7.5). 
22 
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Appendix B. Derivation of theorem I 
Taking the terms in (3.2)E one by one, we have, recalling (2.14), (2.9) and (2.10a), 

(B 1 )  

(B 2)  

(B 3) 

- 
Zj,i(Duj/Dt)s = Ej,i D"(uf) = DL(Zj,<$) - u ~ { ( D ~ E ~ ) , ~  - iik,t 3 j ,k}  

= D"{(Sj, + '&) uj} - zLf(uj),i + ;iik,i(& + tj,,) uj. 5 

Taking (B 2),  defining 

p! = -6 j.t .u!, I 

noting that this equals -[j,iuF by (2.7), and recalling (2.1), we have 

Next, the Coriolis term in (3.2)'; gives - 2aj,i ~j~~~~ R, u: = 2cjmn ~ , ( ~ j i  + tj,i ) (cf; + DLE'n) = 2eimn a m  ~k 
+ 2ejmn Q, Cj,i  DLEn, (B 5)  

where ( 2 . 7 )  has again been used. The second term 
P - 

2cjmn a m  tj,i DLtn = 2Ejmn Qm{(CjDLtn),i - t j  DLCn,i - Ck,i tj t n , p ) .  

Adding half the left-hand side to half the right, exchanging j and n in the middle 
term within the braces, and changing its sign, we have 

_ _ - -  
2cjmn R m  Cj,i DLtn = Ejmn Qm{ (<j DLtn ),i + 6n DL6j,i + tj,i D J J L  - G2,i t j  &,,I 

= cjmn Qm{(Q .I, ),i + DL (GZJ - upL.i tj [,,,I. 
Defining 

we see that (B 5) equals 

Now (3.1) states that 

so adding (B 4)) (B 7) ,  (3.6) and (3.7) to 

P? = - Ejnin Q m m n  = - Cj,i(Q x S ) j ,  (B 6) 

(B 7)  2(Q x - (ui .Q x ?& - DL py - E k i  pf. 

pi  = p; + ps, 

gives (3.8). 

Appendix C. Proof that 5 returns to zero when the Eulerian disturbance 
returns to zero, under the circumstances envisaged in 6 5.3 

By definition @ A  and ZTA are functions of x2, x3 and t but not of xl. We fix t > t, 
and suppress reference to t .  By (5.14) the mapping (x2, x3) -+ (sL, E L )  is invertible; this 
together with the relations DSIDt = DZ/Dt = 0 will enable S and Z to be used as 
measures of particle position in the meridional plane, and hence as a means of relating 
t2 and t3 directly to the Eulerian disturbance fields; mass continuity will then turn 
out to be sufficient to determine &. We shall assume that K(x) is a continuous 
function, and use postulate (vii) of 9 2, which asserts invertibility of the mapping 

x -+ x +E(x). 
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Because DSIDt = DZ/Dt = 0, S and Z satisfy relations of the type BL = Sc for all 
t ,  by (2.23), and hence for t > tf in particular (whether or not 5 is then zero). Since 
also S = B, by (5.13), and hence Ss = (B)c, we have 

similarly 
BL(x) = B(x+X); 

Zyx) = Z(x+g).  
For any given (x2, x3) = (b ,  c ) ,  say, in the meridional plane, define 

(b , c )  = { x ~ x ~  = b, x3 = c>, (C 2) 

the line parallel t o  the x1 axis whose ‘ meridional’ co-ordinates are (b ,  c). We first prove 
that c2(x) = t3(x) = 0 for all X E  (b ,  c). 

Let the curve W be the image of the line (b ,  c) under the mapping x + X  +$. % will 
consist of a single, continuous space curve (as was suggestled in figure 1 )  because of 
the hypothesis that  5 is a continuous function of x, and thus of xl. Now either %? is 
identical with the line ( h ,  c ) ,  in which case C2 = t3 = 0 and there is nothing to  prove, 
or %is not identical with (b ,  c). In  %he latter case there must exist a point 

x = (a’, b’, c’) 

on % whose meridional co-ordinates (b’, c ’ )  $: (b , c )  so that the line (b’,c’) through 
(b’, c’) is distinct from the parallel line ( b , c ) .  The line (b ‘ , c ‘ )  cannot coincide with % 
itself either; for otherwise % would be parallel to  the x1 axis, implying g2 = t2 = b‘ - b 
and E3 = c‘ - c, at least one of which differs from zero, contradicting the basic property 
5 = 0 expressed by (2.7).  Since therefore V and (b’, c‘) are not coincident, there exists 
a point (a“, b‘, c’) which lies on (b’, c‘) but not on %. The inverse image x0 of this point 
under the mapping x + x  +5, that  is to  say the point xo [unique by postulate (vii)] 
satisfying 

therefore does not lie on the inverse image of %, which is (b ,  c): 

- 

x0+5(xo) = (a”,b’,c’), (C 3)  

xO4 (b ,  c). 
Now by (C 1 a )  and (C 3) 

A!?rA(xO) = B(a,” b’, c ’ )  = B(a’, b‘, c’) (C 5 )  

because B(x) is independent of xl. But the point (a’, b’, c ’ )  lies on V; therefore its inverse 
image, ( a ,  b, c )  say, lies on (b ,  c), so that by (C 1 a )  the right-hand side of (C 5 )  equals 
BL(a, b, c) for some a (and thus any a ) .  Therefore 

sL(xo) = BL(a, b ,c ) ,  (C 6) 

and similarly for ZrJ by the same arguments applied to (C 16).  Together with (C 4) 
this contradicts the invertibility of the mapping (x2, x 3 )  + (A!?JJ, zL), and hence shows 
by reductio ad absurdum that  % cannot after all be distinct from (b ,  c) ,  i.e. that 

t2(x) = tdx) = 0 (C 7)  

for all X E  (b ,  c), and hence for all x since b and c were chosen arbitrarily in the first 
place. 

Now it may be shown that (C 7) is sufficient t o  imply 

p = o  
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for t > tf. However we omit the argument since in fact t1 = 0 also, as we shall now 
show from mass conservation and (2.7). Equation (C 8)  will then follow immediately 
from (3.1). 

By (C 7),  the Jacobian of the mapping x-+x+g reduces exactly to  

J = 1 (C 9) 

But p(x) = B(x) by (5.13) so, again using (C 7), 

P.< = P(%+ tl, x 2 , 4  = P(x), - 
since j5 is independent of xl. Therefore pc is a mean quantity (pc = pc), whence, noting 
(4.3) and (4.6), 

by (C 9) and (2.7).  This with (C 9) implies that  

- -  
J = p”/pc = P/pc = J = 1 

t1,l = 0, (C 10) 

t1 = 0. (C 11) 

i.e. that  tl is independent of xl, so that cl = El and hence, using (2.7) once more, 
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